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SUMMARY 

A generalized linear surface noise interaction problem 
is formulated. Noise production by an oscillating surface, 
turbulent or vertical interaction with a surface and scattering 
of sound by a surface are included in the generalized treat- 
ment. The direct effect of viscosity is included in the 
perturbation equations and the boundary conditions at the sur- 
face. An energy equation is derived to illustrate how the 
work or virtual work done at the interface is partitioned 
into the acoustic and vertical modes. 

The problem is re-expressed in terms of a near field 
incompressible viscous problem for the Bernoulli enthalpy and 
a problem for the compressible but inviscid acoustic potential. 
A viscous integral equation for the Bernoulli enthalpy.(or 
surface load) is derived. It is shown that viscosity will 
lead to a "unique" solution of the integral equation without 
the Kutta condition or other auxillary singularity require- 
ment. The acoustic enthalpy is calculated by quadrature 
over the near field solution. 

The results of inviscid two-dimensional airfoil theory 
are used to discuss the interactive noise problem in the 
limit of high reduced frequency and small Helmholtz number. 
The acoustic spectrum is directly proportional to the surface 
load. The extreme limits of a full Kutta condition and no Kutta 
condition (actually no vorticity production) are considered. 
It is shown that in the case of vortex interaction with the sur- 
face the noise produced with the full Kutta condition is 3 dB 
less than the no Kutta condition result. Also, the spectrum with 
Kutta condition decays monotonically with frequency while the 
corresponding result without the Kutta condition decays in an 
oscillatory manner. It is suggested that the difference in the 
high frequency spectra could be detected experimentally. 

The results of a supplementary study of an oscillatory 
airfoil in a medium at rest are discussed. It is concluded 
that viscosity can be a controlling factor in analyses and ex- 
periments of surface noise interaction phenomena. It is fur- 
ther concluded that the effect of edge bluntness and viscosity 
must be included in the problem formulation to correctly calcu- 
late the interactive noise. 



I. INTRODUCTION 

In two previous reports (Refs. 1 and 2) the homen- 
tropic theory of aeroacoustics, based on a kinematic 
definition, of sound and the concept of Bernoulli enthalpy, 
was formulated in detail and applied to a variety of pro- 
blems that illustrate the three basic questions of "free 
flow" aeroacoustics (i.e., in the absence of solid boun- 
daries). In the spirit of Chu and Kovasznay (Ref. 3) the 
modal concept has been stressed in all of the previous 
work. The problem of how to decouple the acoustic and 
vertical modes (to the extent that it is possible) of 
energy transport is oneofthe most interesting questions in 
the field of aeroacoustics. 

For example, when the problem of noise production by a 
turbulent flow (e.g., a jet) is considered, it is customary 
to adopt the "Lighthill hypothesis". Because of differences 
in the basic definition of sound in the various aeroacoustic 
formulations and the level at which the Lighthill hypothesis 
is invoked, there have been serious arguments over what con- 
stitutes the "source" of sound. With the modal approach 
there is no "source" per se, and the application of the Light- 
hill hypothesis is tantamount to assuming a unilateral trans- 
fer of energy from the vertical mode to the acoustic mode. 
The only internal mechanism for acoustic feedback to the vor- 
tical mode is the coriolis coupling acceleration between the 
acoustic particle velocity and the vorticity of the primary 
flow (see Eq. (2.28)of Ref. 1). The coriolis mechanism is 
important in the problem of sound scattering by a steady vor- 
tical flow and the stimulated emission of sound from an un- 
steady vertical flow. Both of these problems were inves- 
tigated in detail in Ref. 2. It was shown by explicit calcu- 
lation that the broadband noise radiated from a discrete 
vortex array can be enhanced by an incident sound field. 
(For a concise summary of this work, see Ref. 4). 

The distinction between acoustic and vertical energy 
transport and the coriolis coupling mechanism between the two 
modes is reasonably well understood in the description of the 
internal dynamics of a fluid medium. However, there remains 
the important problem of how these modes interact in the 
presence of solid boundaries, and in particular when the 
solid boundary has "sharp" edges. The important feature of 
the surface interaction problem is that viscosity becomes a 
controlling factor in the mode coupling at the surface of 
the body. It is the objective of this report to shed some 
light on the importance of viscosity in a class of aeroa- 
caustic problems that involves thin airfoil like surfaces, 
with edges. Two experiments due to Brooks (Ref. 5) and Brooks 
and Hodgson (Ref. 6) will be used to guide and test the 
development of the theory. 
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NOMENCLATURE 

a 

An 

C 

C* 

C 

C mn 
E 

gm 
G 

h 

h' 

LJJ 
J,(z) 

k 

i; 

Ko(z) 

1 

M 

free stream speed of sound 

spectral coefficients of the surface load, 
see Eq. (2.81) 

airfoil chord 

compressibility, see Eqs. (2.72) and (2.73) 

denotes chord of the surface S in the two- 
dimensional problem 

see Eq. (2.83) 

energy density, see Eq. (2.9) 

surface deflection along z-axis 

surface force distribution, see Eq. (2.47) 

magnitude of the surface force, see Eq. (2.47) 

see Eq. (2.84) 

Green's function, see Eqs. (2.75) and (2.76) 

vertical distance of vortex from interactive 
surface 

perturbation enthalpy 

Bernoulli enthalpy 

unit vectors along x,y,z axes, see Fig. 1 

Bessel function 

wc/2v,, reduced frequency 

w/a 

modified Bessel function 

spanwise correlation length of the surface load 

v&, free stream Mach number 



M’ momentum flux, see Eq. (2.101 

n’ unit normal to a surface 

Aq 

Q 

R 

S 

sf 
S(a) 

t 

T,(x) 
3 

UJx> 
v’l 

'd 
V a3 

v 

W 

denotes Fourier transform of variable q with 
respect to tS.me 

q(z = o-1 - q(z = O+>, jump in the dependent 
variable q across the plane z = 0, e.g., see 
Eq. (2.53) 

dissipation function, see Eq. (2.11) 

see Eq. (2.77) 

denotes a fixed or oscillating surface 

outer boundary of the volume V 

acoustic spectral function, see Eqs. (3.1) and 
(3.2) 

time 

Chebyshev polynomial of the first kind 

incompressible perturbation velocity 

Chebyshev polynomial of the second kind 

perturbation velocity field 

disturbance velocity field 

free stream velocity 

integration volume in energy integral 

upwash function see Eq. (2..4) 

Cartesian coordinates, see Fig. 1 

acoustic intensity, see Eqs. (3.36) and (3.37) 

kernel function, see Eqs. (2.65) and (2.66) 

integrated kernel, see Eq. (.2.85) 

total lift on two-dimensional surface, see Eqs. 
(3.16) and (3.10) 
normalized surface load distribution 

surface work or virtural work, see Eq. (2.13) 
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a 

62 

Y(X) 

r 

r. 
6(z) 

8 

K 

x,x* 

A 

V 

T 

9 

see Eqs. (3.28) and (3.34) 

see Eq. (3.3) 

1 - M2 

vortex strength distribution, see Eqs. (3.9) and (3.15) 

circulation, see Eq. (3.16) 

vortex strength, see Eq. (3.33) 

Dirac delta function 

far field directivity angle 

we/2a, Helmholtz number 

see Eq. (2.57) 

see Eq. (2.79) 

kinematic viscosity 

see Eq. (3.35) 

acoustic potential 

X hydrodynamic potential, see Eq. (3.7) 

w frequency in Fourier transform, see Eq. (2.42) 

z1 perturbation vorticity, see Eq. (2.21) 

curl vector curl operator 

div divergence 

grad vector gradient operator 

V2 

v: 
- 

I I 

Laplace operator 

surface Laplace operator, see Eq. (2.60) 

time average 

absolute value 
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GENERAL THEORY OF A CLASS 
%-LINEAR ~~Ro~cousT~c PROBLEMS 

A. The Surface Interaction Problem 
Below, a linear problem is formulated that will permit 

the investigation of three basic noise-surface interactions: 
1) An oscillating surface; 
2) An assumed vertical disturbance (e.g., turbulence) 

interacts with the surface (The Edge Noise Problem); 
and 

3) An assumed acoustic disturbance interacts with the 
surface (The Diffraction Problem). 

These problems are depicted schematically in Figure 1. The 
surface S may be finite or infinite and initially the suri 
face is supposed to be of zero thickness. Later, in Section 
III, the effect of finite edge geometry, is discussed. 

It is assumed that each of the three problems may be 
described with the theory of hornentropic small disturbances 
from a uniform main stream. The appropriate perturbation 
equations are: 

1 Dh' -- 
a2 Dt + div;' = 0 (2.1) 

where 

DGl - + gradh' = vV23' + Dt +grad (divfl) (2.2) 

D -= &+v a 
Dt -P (2.3) 

For the problem of an oscillating surface the boundary condi- 
tions on S are as follows: 

k’ . ff =w+ 

I 
on z = O+ in S 

dx2f=o (2.4) 

where f is the transverse (along the z-axis) deflection of 
the surface. The boundary conditions for the other two problems 
can also be expressed in the form of Eq. (2.4). Denote the 
incident velocity field due to 3 vertical or acoustic distur- 
bance in the absence of S by v Then the interactive 
disturbance field must be such t R' 
on S; i.e., 

at it cancels the velocity 2, 



Noise Produced 

-_.._ 3. Incident Sound 
Interacts with S. 

Disturbance Interacts 

I. Direct Vibrati 
of Surface S. 

--.-. 

- - __ _. - . - 

__--- -- 

__-- ---_ 
Vortex Wake 

Produced 

Figure 1 - Three Types of Interactive Noise 
Production Mechanisms 



ii . v’? = w = -z . Gd 1 on z = Of in S 
i; x c1 = -ii x ;d (2.5) 

The boundary condition on the vertical, or z-component 
of velocity, is the usual boundary condition that is familiar 
in inviscid aerodynamic problems. The second boundary condi- 
tion on the tangential surface perturbation velocity is necessary 
when viscous terms are retained in the momentum equation. The 
importance of the viscous terms and boundary conditions in 
establishing uniqueness of solution (without a Kutta condition) 
and in the partitioning of disturbance energy into the acous- 
tic and vertical modes is the essential content of this report. 
Because of the linearity of the boundary value problem the 
solution can be obtained by superposition of two parts with 
the respective boundary conditions: 

iI . ft = w = -$ . 2, 1 on z = Oi in S 
dx?=o (2.6) 

and 

i; . fl= 0 1 on z = Of in S 
?i x f' = -2 x 2, (2.7) 

For all finite disturbance velocity fields Gd the solution 
of Eqs. (2.1) and (2.2) with the boundary conditions Eq. (2.7) 
is small of the order of the viscosity and will not be con- 
sidered further in this report. The homogeneous viscous 
boundary condition in Eq. (2.4) or (2.6) is the main result 
that is needed to formulate The generalized linear aero- 
acoustic problem. Solve the perturbation equations lm 
and (2.2) subject to the boundary conditions (2.4) or (2.6) 
and the condition of outgoing decaying disturbances at infinity. 

B. A Self Consistent Energy Equation 
It is ins,tructive to derive an energy equation for second 

order perturbation quantities. In so doing the global par- 
titioning of energy into acoustic and vertical parts will 
become evident. Multiply Eq. (2.1) by h', form the vector dot 
product of Eq. (2.2) with v' and add the results to obtain the 
local energy balance, 

g+divg Z-Q (2.8) 
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where 

Ed& + 
2a2 2 

(2.9) 

Q= v1;'j2 + $J (div$')2 

For a statistically stationary disturbance velocity field, 
3d, the time average (denoted by an overbar) of Eq. (2.8) is 

aE vooax + divz = -v (2.12) 

Now integrate the last result over a large spherical volume, 
V, that encloses the surface S. On the outer boundary, S 
the effect of viscous transport is assumed to be negligib f ' e. 
The resultant global energy balance becomes 

v= 2k+ R, dxdy 

= s sf 
TdA + 

J Sf 
v,x l "EdA 

For the case of an oscillating airfoil the first example of 
the generalized problem, the quantity &is the rate at which 
work is done on the fluid by the oscillating surface. For 
the second and third examples the surface is rigid and does 
no work on the fluid. However, it is convenient to interpret 
ras the virtual work due to the surface motion (upwash) W 
that must be imposed to counter the normal component of the 
disturbance velocity field. The global energy equation (2.13) 
shows that the work done by the surface S is partitioned 
into sound radiation through the outer surface Sf, convective 
energy transport through Sf, and viscous dissipation through- 
out the volume V. The last two parts are actually different 
manifestations of the same physical process; i.e., the forma- 
tion of vorticity at the surface S. If the surface Sf is 
sufficiently far from S, no convective transport will be de- 
tected and all of the vertical energy will be counted in the 
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viscous dissipation. If Sf is closer to S then convective 
transport of vertical energy will be a significant part of 
the energy balance. It is noted that similar statements can 
be made about the acoustic term in Eq. (2.13). Certainly 
if Sf is removed to infinity then all of the surface work is 
dissipated by viscosity. 

Finally it is pointed out that viscous dissipation cannot 
be discarded as an energy sink by the simple argument that 
the viscosity is small. It will be shown by explicit cal- 
culation in Section III and in the supplementary report that 
the vorticity is sufficiently singular to yield a finite in- 
tegrated value for the dissipation even for vanishing small 
viscosity. 

C. Mode Splitting and Boundary Conditions 
The boundary value problem composed of equations (2.1), 

(2.2) and the generalized boundary conditions (2.4) or (2.6) 
is well posed. It is of interest, however, to recast the 
problem in terms of acoustic and vertical modes as follows: 

Let 
+ 
v’ = grad@ + 2, (2.14) 

where 6 is the acoustic notential and c' is an incomoressible 
velocity field. Substitute Eq. (2.14) into 

Dfl - + gradH = vV2z' Dt 

where 

is the Bernoulli enthalpy (or Pseudo Sound) 
the incompressible problem for 3'. Now use 
eliminate h' in Eq. (2.1). The result is a 
$; i.e., 

(2.2) to obtain 

(2.15) 

(2.16) 

associated with 
Eq. (2.16) to 
wave equation for 

(2.17) 

Note that, equations (2.15) and (2.17) could also be obtained 
by direct linearization of Eqs. (2.27) and (2.28) in Ref. 1. 
The acoustic mode is "driven" in the near field by the 
substantive rate of change of ?I . In the far field the 
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acoustic mode decays due to viscous dilitational damping. 
The near field hydrodynamic or vertical mode is not coupled 
linearly to the acoustic mode in the interior of the gas. 
However, mode coupling does occur due to the boundary condi- 
tions at the surface. (See Ref. 7 for further discussion of 
this point). 

The boundary conditions on z',?f are chosen to be the 
same as those for the complete perturbation velocity field; 
i.e., 

2 . E;’ =w 

I 

on z = Of in S (2.18) 
zx2f=o 

Then the boundary conditions for $ are homogeneous; i.e., 

z l grad+ = 0 1 

z x grad4 = 0 J on z = O- + in S (2.19) 

It is possible to apply the no-slip boundary conditions on 1 
3' because of the viscous term in Eq. (2.15). Similarly it 
is possible to apply no-slip conditions on the acoustic par- 
ticle velocity as long as the viscous damping term is retained 
in Eq. (2.17). It is the presence of these terms that pre- 
cludes the necessity for a Kutta condition or other singularity 
criteria to solve the relevant boundary value problem. 

A somewhat different insight into the role of viscosity 
and the coupling of the pressure and vorticity modes may be 
obtained as follows. Take the curl of Eq. (2.2) or (2.15) to 
obtain the vorticity diffusion equation 

DZ' -= 
Dt vV2Z' 

with 
* w’ = curlGf = curl2' 

(2.20) 

(2.21) 

Also take the substantive derivative of Eq. (2.1) and the di- 
vergence of (2.2) to obtain the damped wave equation for h'; 
i.e., 
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1 D'h' 4 v 
-- -yyp a2 

V2Dh’ 
-73 Dt 

_ V2h' = 0 (2.22) 

As noted by Chu and Kovasznay (Ref. J).the vorticity and pres- 
sure modes decoutile completely in the interior of the gas. 
At the surface, the boundary conditions on 3' can be used to 
derive the relations between h' and 3'. First write Eq. (2.2) 
in the form, 

D? - + grad Dt 
h' + 4 V Dh' 

39-E =- ) 
vcurlz' (2.23) 

Because of the planar geometry of S and the no-slip boun- 
dary conditions, it follows that 

WZ 
=$ .;I = 0 (2.24) 

Now project Eq. (2.23) onto the surface S and use the 
boundary conditions on 3' to obtain the following boundary 
conditions. 

a 4 v Dh' 
az h'+j9Dt 

k'x grad 4 v Dh' 
h’ +ygTTE- > 

a2 
=Vaz on z = O+ in S (2.25) 

The intrinsic coupling of the pressure and vorticity modes 
is evident from these relations. The normal pressure gra- 
dient at the surface is balanced by the surface acceleration 
(real or virtual) and gradients of the surface vorticity. 
The second expression shows how vorticity is produced at a 
surface by pressure gradients along the surface. Near sharp 
edges that have large pressure gradients, the production of 
vorticity can be intense. It is also clear from this rela- 
tion that to obtain a meaningful solution (noniconstant 
surface load) of the viscous boundary value problem, the pro- 
duct v(aw'f/az)must be finite even for a vanishingly small 
viscosity coefficient. 
very singular. 

The coupling between modes is thus 
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D. The Associated Inviscid Boundary Value Problem 
For each of the boundary value problems and energy rela- 

tions derived thus far there is a corresponding "inviscid" 
relation. First of all, the perturbation enthalpy and 
velocity satisfy the relations 

1 Dh' -- 
a2 Dt +divf' =0 

Dfl -- 
Dt +gradh' -0 

(2.26) 

(2.27) 

with the boundary condition 

2 . 2’ = on z = Ot in S (2.28) 

and the radiation condition. The energy relation (2.13) 
becomes 

w-= 2A+ h'W dxdy 

= J Sf 
h'v;, dA + s sf 

VOS 1 l n'EdA 

(2.29) 

where the outer surface Sf can be taken to infinity since 
acoustic and vertical waves do not decay. The convective 
transport of energy in Eq. (2.29) is d ue to the singular vor- 
tex wake. It is the singular remnant of the effect of vis- 
cosity, and in general it is a significant part of the work 
done by the surface. Without the explicit effect of viscosity 
at the surface there is no way to determine the energy parti- 
tioning without recourse to an artificial uniqueness criteria 
like the Kutta condition. This will be demonstrated explicitly 
in the next section where the boundary value problem is cast 
in the form of a singular integral equation. 

The inviscid boundary value problems for 2, and $I are 
respectively: 

div :* = 0 (2.30) 

Dff - + grad%= 0 Dt 
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2 . ;t = W on 2 = O+ in S 

and 

with 

(2.34) 

1 D2$ -- 
a2 Dt2 

w 
az = 0 on z = Of in S 

The perturbation enthalpy 

h'=~-!?$ 

also satisfies the homogeneous wave equation 

(2.32) 

(2.33) 

1 D2h' 
SF - V2h' = 0 

and 

&= 
Dt 0 

It follows from (2.25) that 

ah' DW - =-- 
az Dt on z = Ok in S 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

In each boundary value problem the boundary conditions on 
the tangential surface velocity components must be given up 
because the inviscid equations are of lower order,. Also, the 
inviscid problems do not have unique solutions and some 
auxiliary criterion (usually the Kutta condition) must be 
used to establish uniqueness. 

E. An Integral Equation for B&noulli Enthalpy (Uniqueness) 
Consider the viscous boundary value problem for u" 

7f;i.e., and 
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div ff = 0 (2.39) 

Df' - + grad31 = vV2z' 
Dt (2.40) 

z . u’f =w 1 on z = 02 in S 
zx3=0 (2.41) 

It is convenient to work in the frequency domain. Take 
Fourier transforms of the above equations with respect to 
time and note for any dependent variable, q, that 

/ 

0) 
$d = 

e-iwt 
-03 q(t) dt 

Then 

with 

q(t) = & / -1 eiwt $"> dw 

div ;, = 0 

DG' - + grad% = vV2c' Dx 

d . ;I = E 1 + 
on z = O- in S 

iExG'=O 

and 

D = v a 
Dx coax +la 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 
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The solution can be represented in terms of an unknown nor- 
mal force distribution on the surface S; i.e., 

z= -2 shy> 6(z) (2.47) 

Add 2 to the right hand side of (2.44) and then take the 
divergence and curl to obtain 

and for the vorticity 

D;l 
- -vv2 Cl 
Dx 

= $ x gradz&(z) 

The solution of (2.48) is 

where the integration is over the surface S with 

Take the limit of (2.50) as z + 0 to obtain 

2: 
F 

= Limx = TZ 
z + o+ 2 

or 

,F = A?J = 7f!(x,y,o-1 - z(x,Y,o+) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

is the local jump in the Bernoulli enthalpy on the surface. 
For points off the surface A?J must vanish. 

The solution of (2.49) can be expressed in the form 

2 = d x grad& (2.54) 

16 
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where 

DQ 
Dx -vV2Q = ,F 6(z) (2.55) 

and it is readily shown that 

(2.56) 

where 

and 

A* = (A2 + iw/v)~ , A = g (2.57) 

curl;' = dV'Q aQ - grad 3z (2.58) 

From (2.441, with z # 0 

a+ 2 =+g.curl;’ 
DX az 

where 

Also 

= -vV:Q 

vi=& +a2 02 

(2.59) 

(2.60) 

(2.61) 

Thus 

D W 
- =k Dx J s _rCb~ 

l- exp[xl l (2 - Ti) - X*IZ - ZI] 

I -51 x' 
d$ 

for z # 0 (2.62) 

Now solve (2.62) for l and take the limit as z + 0 to obtain 
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the following integral equation for x(z); i.e., 

(2.63) 

where the kernel is defined by the relation 

a3 s o exp(+iws/vo5) l- expIX(x - s> - A*lx' - Xsl) ds 

I ; - Tsl 
(2.64) 

The integral equation for the corresponding two-dimensional 
case can be obtained by integrating (2.64) over the spanwise 
coordinate. From a previous report (Ref. 8) the final ex- 
pression is 

s L(<)~(x - 5) dS = - x(E) , x in C 
C 

(2.65) 

where 

X(X) = & c2-r exp(-iws/v,) 
0 

14x - 51 + exp{A(x - 5)) Ko(A*/x - 51 )]d5 
(2.66) 

and the integration is only over the chord C of the inter- 
active surface S. 

The solution of (2.65) and a more general equation for 
airfoil type surfaces with finite thickness has been the sub- 
ject of a recent development of "viscous thin airfoil theory". 
The results are summarized in a final report (Ref. 8) and an 
AGARD report (Ref. 9). For the moment the most important 
point to note is that the kernel function x(x) (Eq. (2.66)) 
has a logarithmic singularity for small argument no matter how 
small the coefficient of viscosity. The corresponding invis- 
cid kernel of the incompressible Possio equation (obtained 
by dropping the second termin (2.66)has a Cauchy singularity. 
The viscous integral equation has a unique solution (See 
Ref. 8) while the inviscid equation has an eigensolution that 
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is associated with the circulation of the perturbation flow 
field (See Section IIIB). The strength of the eigensolution 
determines uniquely the amount of vertical energy that is 
shed into the wake. The eigensolution also contributes di- 
rectly to the "source" term D?f /Dt in the acoustic problem 
(2.33) and (2.34) and so affects the radiated sound. With- 
out viscosity there is no physical criterion to determine 
the eigensolution and it is customary to resort to the Kutta 
condition or principle of minimum singularity at the trail- 
ing edge to establish uniqueness. The solution of the 
viscous integral equation (2.66) has a square root singular- 
ity at a mathematically sharp leading or trailing edge. The 
singularities can be removed by slightly blunting the edges 
as shown in Section III and in that case there is no useful 
edge criteria whatsoever to establish uniqueness. The sur- 
face load, shed vorticity and noise must be obtained by 
solving the viscous boundary value problem. 

F. The Acoustic Potential 
Once H is known from the solution of the appropriate 

integral equation, there remains the problem of solving 
for the acoustic potential $; i.e., 

1 D*9 4 v V2D$ v24 = 1 D?-i -- 
-San Dt , a2Dt2 az Dt (2.67) 

with 

a@ =o 
az 

1 
on z = Ok in S 

d x grad+ = 0 
J 

(2.68) 

and the radiation condition. Actually, because of the dila- 
tational damping term, it is sufficient to require decaying 
solutions of (2.67) at infinity. 

The interpretation of (2.67) and (2.68) is conceptually 
appealing. The origin of the interactive noise is the local 
substantive rate of change of 3. The surface itself is a 
passive element in the noise production process but it does 
cause compressible diffraction primarily through the boundary 
condition on the induced vertical component of velocity. Also, 
it is emphasized that by construction no vorticity is pro- 
duced in the compressible part of the interaction process. 
A$1 vorticity is associated with the surface loading due to 

. It is this observation that permits an important simpli- 
fication of the acoustic problem; i.e., the direct effect of 



viscosity can be omitted in the acoustic problem. Since 
there must be no compressible production of vorticity, the 
compressible viscous term is omitted in (2.67) and the viscous 
boundary condition in (2.68) is replaced by the condition that 
the acoustic potential be continuous across the plane z = 0 
for all points not in S; i.e., 

1 D2$ _ v2+ = 1 !?i -- 
a2 Dt2 a2 Dt (2.69) 

a$ 
3z = 0 on z = O? for (x,y> in S (2.70) 

$(z = o+) = Hz = O-) for (x,y> not in S (2.71) 

plus a radiation condition on the far field behavior of 9. 

Now take the Laplacian of (2.69) and introduce the com- 
pressibility variable c* such that 

v2$l = c* (2.72) 

Then, in the frequency domain 

1 D2s* 
gT---- - V2c” = 1 D vq-/ 

Dx2 - a2Dx - 

1 DE a6 =---- 
a2 Dx az (2.73) 

where (2.48) has been used to replace V27f. The solution for 
2." is 

1D a c*=-- 
J a2Dxz S z(t) G(x - I> dt (2.74) 

where 

(2.75) 

or 
G = exp(-i'i;/B2>(R - Mx) (2.76) 

4nR 
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with 

R = x2 + B2(y2 + i2) 
1 

% 

In the far field 

M= v-/a 

‘i; = w/a (2.77) 

C* g 1 -k .-?- G(z) 
a2 Dx az J S 

exp(i'i;A/B2) z(t) d? (2.78) 

with 

(2.79) 

From the continuity equation (2.1) it follows that the far 
field acoustic enthalpy is.the compressible continuation of 
H via the relation 

aG (Z) II; =-r exp(i!%B2) x(x) dz (2.80) 

Thus it appears that the far field pressure and the OASPL 
for example can be calculated from the incompressible 
problem without specifically solving for the acoustic poten- 
tial. The actual acoustic potential and velocity and there- 
fore the far field intensity must include the solution of 
(2.72) subject to the diffraction boundary conditions (2.70) 
and (2.71). 

The essential effect of viscosity, then, is to establish 
Vuniqueness" of solution of the surface load distribution 
in the integral equation (2.65) with the kernel function 
(2.66). Once the surface loading is determined, the shed 
vorticity and the acoustic far field are uniquely determined. 
The same statement can be made about the corresponding in- 
viscid problem (See Section IID). However, the corresponding 
compressible or incompressible integral equation for the sur- 
face load has an eigensolution. The strength of the acoustic 
field and the vortex wake depend on the strength of the 
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eigensolution. Without a viscous integral equation to de- 
termine the surface reactive load there is no apriori phy- 
sical criterion to determine the eigensolution. It is then 
customary to invoke the Kutta condition, principle of mini- 
mum singularity or modifications thereof to establish 
uniqueness. It is important to note that edge singularities 
are completely admissable in the linearized viscous or in- 
viscid problem. Only by accounting for finite edge curvature 
can these singularities be eliminated. It is also true that 
the edge singularities pose no real problem in the calculation 
of the noise or vortex wake. It is much more important to 
calculate the surface loading correctly, both in magnitude 
and phase, than to worry about the appearance or absence of 
an edge singularity. These remarks, by the way, are indepen- 
dent of frequency. Even for very low frequency interactions 
where the noise and wake vorticity scale with the total lift, 
it is known (Ref. 8) that the Kutta condition will usually 
overestimate the lift. 

G. Chebyshev Representation of the Surface Load 
and Acoustic Far Field 

Consider the class of quasi two-dimensional problems 
where the surface load is calculated from (2.70) and the far 
field from (2.79) with the effective spanwise length scale 
e over which the load is correlated or non-zero. The solu- 
tion of the integral equation (2.65) can be expressed in a 
series of Chebyshev polynomials; i.e., 

gx) = c 
n=O An 

5+2x/c) 
(2.81) 

[1 - (2x/+)2]% 

where c is the chord of the two-dimensibnal surface. The 
spectral coefficients A, may be calculated from the finite 
matrix representation of the integral equation; i.e., 

N 

c 
C, An = g, m=O,l,..,N (2.82) 

n=O 
with 

c, = (m+l) ' 
rr2 / 

cosn+d$ - cos 0) 
0 / 

' cosI(m+l)B)d@q(cose 
0 

(2.83) 
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y-G 
/ 

1 
-1 (l 

_ x2 p/2 u,(x)jJ(x) dx (2.84) 

and 

Xl(X) = 25Fv, 
/ 

x c%k)dE 
,a0 

(2.85) 

The numerical solution of (2.82) for the surface load distri- 
bution is the subject of Ref. 8. 

Now substitute the Chebyshev series (2.81) into (2.80) 
to obtain the acoustic far field in terms of the spectral 
coefficients of the surface load. The result is 

h’ = _ g .e . c/2 
ma / 

exp[(lir/B2)(x/R - M 116 
-c/2 

m 
c An T,( 26/c > dE 
n=O ( l- (2Ud2) l/2 

aG =-- . 
az 

$zAn/" expI(i~/B~) 
n=O 0 

(x/R - M)cos8) cosnede 

= iK l & 

8 (z/R) exp{(-iK/B2)(R - Mx)) 

co 
c A, I" J,I( K/B2)(x/R - Ml1 
n=O 

with the Helmholtz number 

(2.86) 

K = we/2a = i&2 (2.87) 

For the range of compact frequencies ( K << 1) only the 
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first term in the series of (2.86) contributes to the far 
field and the magnitude of hi is proportional to A, or the 
total interactive lift that develops on the surface. The 
value of A, may be calculated uniquely with the viscous 
theory as shown in Refs. 8 and 9. 

H. Effect of Edge Bluntness 
From extensive calculations of the solution of (2.82) 

in Ref. 9 the following important result was found. For a 
surface with zero thickness the edges are mathematically 
sharp. As a result, the solution of (2.82) converges to the 
inviscid solution with Kutta condition (See Section III) for 
any Reynolds number greater than about 500. The departure 
from inviscid behavior is of order l/(Re)% . The reason 
is that by introducing a mathematically sharp edge or zero 
length scale the linear viscous effect is grossly overex- 
aggerated at the edges. By introducing a finite edge radius 
the viscous edge effect is diminished and viscous action over 
the entire surface becomes the controlling factor in establish- 
ing the surface loading. In all cases calculated (See Ref. 8) 
the surface loading is diminished by introducing finite edge 
geometry. Anexample of the reduction in the steady state 
lift curve slope on a surface at angle of attack is shown in 
Figure 2. The lift on an elliptic section is about 15% less 
than the lift on a Joukowski airfoil with cusped trailing 
edge. More extensive comparisons of unsteady results for 
surfaces with and without edge curvature may be found in Ref. 
8. For moderately low values of reduced frequency (wc/2v, = 
order of a few tenths) the real and imaginary parts of A,, Al, 
the two leading spectral coefficients in the surface load 
series (2.80) for an elliptic section are substantially 
different from those of flat plate theory. The changes are 
in quantitative agreement with measurements of Davis and 
Malcolm (Ref. 10). 

To perform meaningful acoustic calculations it is neces- 
sary to solve the surface load problem for relatively large 
values of reduced frequency 1 (wc/2v,) = 0(1/M) and larger 1. 
The numerical problems in evaluating the kernel functions 
with thickness and viscosity for high frequency have not been 
completely resolved and detailed results on this aspect of 
the problem will be reserved for a future study. 

III. APPLICATIONS OF "INVISCID" THEORY 

A. Zero Thickness Two-Dimensional Surface 
In the following development the family of solutionsofthe 

well known two-dimensional incompressible oscillating airfoil 
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Figure 2 - Degradation of the Steady State Lift Curve Slope (CL ) 
due to Trailing Edge Bluntness (E'); note the a 
airfoils sketched above the graph. 



problem (Ref. 11) is used to draw some general inferences 
about the generation of sound for the generalized surface 
interaction problems. Following the work of Yates and 
Houbolt (Ref. 12) and recent work of Howe(Ref. 13) the ex- 
treme limits. of a full Kutta condition and no Kutta condition 
are used to illustrate why it is important to complete the 
development of the viscous theory as formulated in the pre- 
vious Sections. 

For the two-dimensional problem, the spectrum of the 
acoustic enthalpy (See Eq. (2.79)) can be expressed in the 
form 

where G is the asymptotic form of the three-dimensional Green's 
function (2.76) and 1 is some measure of the spanwise corre- 
lation of the surface disturbances. The airfoil semi-chord 
(c/2) is chosen as the unit of length and the spectral func- 
tion S(a) is expressed in the form 

/ 
1 

S(a) = -1 exP(iaX) y(x) dx (3.2) 

where 

a = o.K/B2)(COSe - PI) (3.3) 

and y(x) is the normalized chordwise load distribution 
that must be calculated from the incompressible boundary 
value problem: 

div G = 0 

DZ 
Dx + gradP = 0 

3 l u’ =rony=O, -l<x<l (3.4) 

with 

D a Dx =ax +ik 
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and 

9(x 1 = P(x,O-) - P(x,o+) (3.6) 

The solution of '(3.4) can be expressed in terms of a hydro- 
dynamic potential X and a vortex sheet distribution y(x) 
that are related to&@ as follows: 

f= grad x for YZO (3.7) 

av au -- 
W=3Y ay = Y(X) 6(y) 

Y(X) = aAx 
w dy = ax 

(3.8) 

(3.9) 

(3.10) 

with 

AX = x(x,0-) - x(x,0+> (3.11) 

The potential is a harmonic function with the representation 

lo3 
X =- 

J 
-1 

2TT -1 v(S)tan & dC (3.12) 

For x > 1 (in the wake) the following relations hold: 

ax> = 0 (3.13) 
AX =- Pexp{-ik(x - 1)) (3.14) 

Y(X) = - ikI'exp(-ik(x - 1)) (3.15) 

where f is the negative of the potential jump across the 
trailing edge. Also, I' is the circulation around the 
surface; i.e., 



y=o- 
r = Y- ii (3.16) 

y=o+ 
l d; = - Ax 

x=1 
x=1 

The value of r is unknown and in fact is completely 
indeterminate with inviscid theory. 

An integral equation for y(x) is obtained by applying 
the boundary condition (3.4) to the integral representa- 
tion (3.12). The result is 

Y(S) m dE = g(x) (3.17) 

with 
m 

g(x) = -2-5jx) -1 F 
/ 1 

exP{-ik(S - 1)) dS 
(5 - xl 

where the slash through the integral denotes 
the Cauchy principle value. 

(3.18) 

The solution of (3.17) iS 

Y(X) = 
1 

TI(1 - x2+ L 
-r +A$!l l 

% 
(1 - s+ ds 

-1 s-x 

/ 

03 

1 
expf-ik(S - 1)) dS 

(5 - xl 

(1 - s+ 
(s - x> 

%ms) ds ] (3.19) 

a well known result (e.g., See Ref. 11). 

The spectral function S(a) from (3.2) can be expressed 
in terms of y(x) with the formula 
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S(a) = r $ eia + (5 - 1) J: eicLx y(x) dx 

(3.20) 

that is easily derived from (3.9) and (3.lO)by integration 
by parts. Now substitute (3.19)into (3.2O)to obtain the 
following representation of the acoustic spectrum: 

S(a) = r 1 - i Jo(c) + k eia 
K ) 

+ 4 (1 - i) 2 I" J,(a) /_: (1 - 5')' U,-,(S) WE) dS 

(3.21) 

where Jr,(a) is the ordinary Bessel function and U,(s) is the 
Chebyshev polynomial of the second kind. 

On the basis of the viscous analysis of a zero thickness 
surface, (Ref. 9) the value of the circulation r must be 
such that the inviscid flow at the trailing edge is smooth 
(the Kutta condition). In that case the expression in square 
brackets in (3.19) must vanish as x + 1‘. The resulting ex- 
pression for r is, 

2 
rK = - 

J -1[(l++-s)]‘-%s) ds 
ik eik 

(3.22) 
Kl(ik) + K,(ik) 1 

where K,, Kl are modified Bessel functions of the second kind. 
The subscript on r is used to indicate the Kutta condition. 
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On the other hand, if the surface has a finite thickness, 
the value of r is diminished in a way that must be calcu- 
lated with the viscous theory. An extreme case is that 
when no vorticity is shed into the wake or I' = 0. One 
may refer to this example as a case of no Kutta condition. 
It is physically the more correct result for high frequency 
finite thickness surface interactions where there is in- 
sufficient time for viscosity to establish a finite circula- 
tion. Recall (Figure 2), however, that even at low fre- 
quency there are significant departures of the total lift 
from the result produced by the Kutta condition. 

The expression for the total lift on the surface is 

ikKl(ik)] -2ik / 
1 

-1 
(1 - s2)%jms) ds 

(3.23) 

For k * 0 the lift is proportional to r. For high fre- 
quency and no Kutta condition the lift is given by 

/ 

1 
LNK = -2ik -1 (1 - s2)'_Wis)ds (3.24) 

On the other hand if the full Kutta condition is applied at 
high reduced frequency, the asymptotic form of the lift is 
given by the expression 

c(l+s)/(l -s:]'Hs) ds / 

1 
-2ik 

-1 Cl 
-s2)'_Wis)ds 

(3.25) 

The spectral form of the total lift is of interest 
because it is proportional to the far field acoustic spectrum 
in the compact limit. Consider the compact case where the 
reduced frequency is large and the Helmholtz number K in 
(3.21)is small or 

K << 1 << k (3.26) 
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The Mach number must, of course, be small for the validity 
of these relations. Then only the leading term in the series 
expression in (3.21) is important and s(c) is given by the 
asymptotic expression 

/ 

1 
S(a) = fik (n/2k)%exp(-is/4) -2ik -1 (1 - s2)'ps)ds 

(3.27) 
With the full Kutta condition and no Kutta condition, the 
asymptotic spectrum is proportional to LK and LNK,respectively. 

For convective disturbances (e.g.,a frozen turbulence 
pattern that interacts with the surface) the spectrum of the 
surface velocity is of the form 

(3.28) 

where 7T is some function of the frequency. In this case 
the integral in (3.27) can be evaluated exactly and the 
acoustic spectra and lift are given by the following ex- 
pressions: 

sK = LK = -2 %(2n/k)' ei(k - JT'~) (3.29) 

'NK = LNK r -4 %(2n/k)' l 1 sin(k - n/4) (3.30) 

and for the spectral density functions, 

I2 = ILKI = 8rrlyo\2 l l/k (3.31) 

ILNKI 2 = 8~1Iyol~ l t sin2(k - v/4) (3.32) 

The interesting feature of these results is that with a 
Kutta condition the spectrum decays monotonically with k 
while the no Kutta spectrum has an oscillatory decay with 
local maxima and zeroes for particular values of k as 
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shown in Figure 3. .These results‘suggest that a simple 
experiment could be derived to measure the acoustic‘spec- 
trum of a controlled convective or acoustic disturbance and 
determine by what degree the Kutta or no Kutta behavior is 
prevalent at high frequency. 

B. Vortex Fly By a Sharp Edge 
A specific example of the foregoing result is that of a 

single weak vortex convecting past a fixed surface. In that 
case the surface upwash is 

%+%,t) = *v- (x -“,-t‘;$+ h2 Eo 01 (3.33) 

where ro is the strength of the vortex and h is the 
vertical distance of the vortex from the plate. 
of '$fl is of the form (3.28) with 

The spectrum 

where 

T = 2h/c (3.35) 

and k is assumed to be positive. For convecting boundary 
layer turbulence, the parameter h is of the order of the 
boundary layer thickness, the spectrum is peaked and has a 
sharp cutoff near the reduced frequency, k = l/~, that is 
much greater than unity. Substitute (3.34) into (3.31) and 
(3.32) and estimate the acoustic intensity with the relation 

OD f= (2V,/C)2 $ 
/ 

I&;1 2 dk 
0 

(3:36) 

The final result is 

y= & . $ . sin'8 ke-2k' F*dk 

(3.37) 

where 

r’* = 1 Kutta Condition 
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Figure 3 - Spectrum of the Far Field Interactive Noise and 
Surface Load for an Airfoil Encountering a 
Sinusoidal Gust; k = WC/~V~. 



= 4sin2(k - n/4) No Kutta Condition (3.38) 

The integration over k is easily performed with and without 
the Kutta condition. The ratio of the acoustic intensity with 
and without the Kutta condition is 

&LEE= 1 
XNK (2 - 4r3)/(1 + .t212 

g l/2 for T << 1 (3.39) 

Thus the intensity is approximately 3dB less when the Kutta 
condition is applied. With a full Kutta condition convective 
vorticity is produced in the wake with an energy level that 
is the same order of magnitude as the radiated sound. In 
the supplement to this report a full viscous problem with no 
flow is considered and a similar result is obtained. The 
vertical energy in that case, however, is confined to the 
vicinity of the edges and is not convected into the far wake 
as above. An even more drastic result was obtained in the 
recent trailing edge noise study of Howe (Ref. 13). For a 
semi-infinite plate the edge noise due to convected turbulence 
is typically 1OdB greater when no Kutta condition is applied. 
It should be pointed out however that the semi-infinite plate 
presents a much more singular problem because of the possi- 
bility of very weak upstream decay of the surface loading. 

IV. SUPPLEMENTARY MATERIAL 
,A. Discussion of Trailing Edge Noise Models 

During the earlier part of this program an inviscid dy- 
namic model of discrete vortex fly by of a blunt (parabolic 
and rectangular) trailing edge was developed and calculations 
of the surface pressure and spectra near the trailing edge 
were made. The objective was to compare with the experimen- 
tal results of Brooks and Hodgson (Ref. 6). The inviscid 
model accounts for two effects that are not included in the 
preceding analysis. First, the geometric shape of the 
edge (and the associated curvature of the mean flow) and 
second, the non-linear reaction of the convecting vortex to 
the surface boundary conditions. On the other hand, the 
important effect of vortex production and shedding due to 
viscosity is omitted. 
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The discrete vortex model was used in earlier work CRefs. 
1,2) to illustrate the basic coupling between the vorticity 
and acoustic modes. The model has been used by Hardin (Ref. 
14) to model the hydrodynamic origin of cavity noise. 
More recently Obermeier (Ref. 15) has-used the model to cal- 
culate the noise emminated due to vortex fly by of finite 
cylindrical bodies. Again, no vortex shedding is permitted 
in Obermeier's study and noise is calculated with the theory 
of Mohring (Ref. 16) that in practice differs very little 
from the theory of Powell (Ref. 17) as used by Hardin (Ref. 
14). 

While some of the basic velocity scaling laws and fre- 
quency parameters evolve from the inviscid discrete vortex 
model, the fundamental question of the trailing edge noise 
problem is side stepped completely. That is, how does vis- 
cosity control the vortex shedding and load alleviation near 
the edge? Howe, (Ref. 13) in a recent review of trailing 
edge noise theory has called attention to the Kutta condi- 
tion as the fundamental uncertainty in the edge noise problem 
(See Section IIIB). If one adopts a potential theory point 
of view with regard to the trailing edge fluid mechanics, 
and, furthermore, if the edge is mathematically sharp, then 
the difficulty can indeed be reduced to an argument about the 
potential flow edge singularity or the Kutta condition. 
However, it is this authors point of view that "potential 
theory" as a fluid mechanical model is at its very worst near 
the trailing edge. Furthermore, with the slightest amount of 
edge blunting the edge singularity is eliminated and the 
Kutta condition becomes meaningless as a local vortex shedding 
criterion. More important is the fact that singularity 
arguments avoid rather than illuminate the basic physics of 
the problem. The main thesis of the present work is that 
viscosity is the missing piece of the physics and must be 
accounted for in the fluid mechanical calculation near the 
trailing edge. 

It was the realization of the importance of direct vis- 
cous effects in this study and in Ref. 8 that led to a redi- 
rection of the present effort from potential flow non-linear 
modeling to viscous flow linear modeling. Ideally, it would 
be desirable to calculate the complete nonlinear viscous fluid 
mechanics but that, of course, is an extremelydifficult prob- 
lem at the present time. The present state of development of 
the linear viscous model is the following: The theory for 
the zero thickness two-dimensional surface is complete and 
some calculations have been made for low reduced frequency. 
The results are more directly applicable to unsteady airfoil 
work and are presented in Ref. 8. The evaluation of the YIS- 

cous kernel function and the load calculations for high fre- 
quency is not trivial but considerable progress has been made. 

35 



Based on the flat plate results for low frequency it was 
found, however, that direct viscous effects atthe trailing 
edge are so strong that the calculations converge to the 
inviscid results with Kutta condition for Reynolds number 
(based on the chord) greater than 500. 

The foregoing result means that when direct viscous 
effects are included in the linearized problem, there must 
not be any geometric length introduced that forces an in- 
finitesimal or zero Reynolds number as for example at a 
mathematically sharp trailing edge. The correct formulation 
of the linearized viscous problem must include the finite 
trailing edge geometry, as discussed in Ref. 8. With a 
finite edge geometry the evaluation of the high frequency 
viscous function is even more difficult. To date only low 
frequency results have been obtained for oscillating rigid 
airfoils. The load calculations agree more closely with ex- 
perimental results (Ref. 10) (both in magnitude and phase) 
than the flat plate calculations with Kutta condition. -Based 
on the low frequency results it is concluded that even 
greater departures from the flat plate theory will result as 
the frequency is increased. The fundamental linearized 
problem, then, is to solve for the viscous load distribution 
on a surface with finite geometry for frequencies well into 
the acoustic regime. The basic theory is available and it 
remains a computational problem to carry out this program. 

B. Summary of the Supplemental Report 
In Ref. 18, explicit viscous calculations have been made 

for an oscillating airfoil problem. The results are extremely 
important both for the conceptual understanding of noise- 
Surface interaction problems and for the quantitative cal- 
culation of interactive noise. The problem was motivated 
by the experiment of Brooks (Ref. 5). An airfoil section 
was vibrated at Helmholtz numbers of 1.3 and 2.04 in an 
anechoic chamber. The surface pressure and motion and the 
radiated pure tone sound were measured simultaneously. The 
surface measurements were also used in the "inviscid" Kirchhoff 
integral relation to calculate the radiated sound. The calcu- 
lation overestimated the sound by 2 to 5 dB depending on 
direction. Also the measured chordwise surface pressure dis- 
tribution has a flat behavior near the edges while aerodynamic 
theory predicts a square root decay of the edge loading. A 
more detailed description of the experiment may be found in 
(Ref. 5). 

The theoretical work in the supplementary report has 
shown that the measured surface load and sound field are 
mutually consistent if the effect of viscous dissipation at 
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the edges is taken into account. The inviscid Kirchhoff in- 
tegral has acoustic energy conservation built in so that all 
of the work done by the vibrating airfoil is propagated to 
the far field in the form of sound. When the same surface 
load is used in a viscous incompressible calculation the sur- 
face work appears in the near field (close to the edges) as 
kinetic energy associated with the vorticity formation due 
to viscosity. For a Helmholtz number of order unity and a 
near quadrupole distribution of the surface load it is shown 
that the viscous energy dissipation is nearly equal to that 
propagated as sound. 

For Helmholtz numbers less than unity (into the compact 
regime) it is expected that even more energy will be trans- 
ferred into the vorticity mode. Inviscid acoustic theory 
in the form of Kirchhoff integrals will in general overpre- 
diet the noise in the compact regime. In each application 
an estimate of the dissipation should be made with an incom- 
pressible viscous analysis like that in the supplementary 
report. A correction to the inviscid Kirchhoff calculation 
can then be made. For very small Helmholtz numbers it would 
appear that there is no alternative to a complete compressible 
viscous calculation. Furthermore, when there is a finite 
convection velocity the surface work transferred into vorti- 
city is greatly enhanced and it is even more important to 
understand and calculate the effect of viscosity. 

v. CONCLUSIONS 

The most important conclusion of this study is that vis- 
cosity is an important missing physical element in aeroacous- 
tic theories where interactions with a surface with edges is 
involved. Even in the absence of a mean flow there can be 
an appreciable viscous effect near the edge with an associ- 
ated loss of energy to the acoustic mode. With a finite 
convection velocity, the magnitude of the circulation around 
the surface is determined uniquely by viscosity. The use of 
the Kutta condition will in general overestimate the circula- 
tion which means that more vorticity is shed into the wake and 
less noise is generated. There is no apriori reason why a 
potential flow singularity cannot occur at the trailing edge. 
It is much more important to estimate the magnitude of the 
load distribution correctly over the entire surface and this 
can be accomplished with the viscous theory. It is important 
that finite geometry and boundary layer displacement thick- 
ness effects be accounted for in the viscous calculation. 
The acoustic theory developed in this report and the associated 
report on viscous thin airfoil theory (Ref. 8) is the correct 
approach for carrying out the surface load calculation. The 
difficult practical step is the unsteady aerodynamic load cal- 
culation for high reduced frequency - a problem that has per- 
plexed the unsteady aerodynamiscist for many years. 
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Considerable progress has been made during the course of this 
program but much work remains to be done before routine cal- 
culations can be made. 
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